
A Type-Theoretic Approach to Structural
Resolution

Peng Fu, Ekaterina Komendantskaya

School of Computing, University of Dundee

Abstract. Structural resolution (or S-resolution) is a newly proposed al-
ternative to SLD-resolution that allows a systematic separation of deriva-
tions into term-matching and unification steps. Productive logic pro-
grams are those for which term-matching reduction on any query must
terminate. For productive programs with coinductive meaning, finite
term-rewriting reductions can be seen as measures of observation in an
infinite derivation. Ability of handling corecursion in a productive way
is an attractive computational feature of S-resolution.
In this paper, we make first steps towards a better conceptual under-
standing of operational properties of S-resolution as compared to SLD-
resolution. To this aim, we propose a type system for the analysis of
both SLD-resolution and S-resolution. We formulate S-resolution and
SLD-resolution as reduction systems, and show their soundness rela-
tive to the type system. One of the central methods of this paper is
realizability transformation, which makes logic programs productive and
non-overlapping. We show that S-resolution and SLD-resolution are only
equivalent for programs with these two properties.
Keywords: Logic Programming, Structural Resolution, Realizability
Transformation, Reduction Systems, Typed lambda calculus.

1 Introduction

Logic Programming (LP) is a programming paradigm based on first-order Horn
formulas. Informally, given a logic program Φ and a query A, LP provides a
mechanism for automatically inferring whether or not Φ ` A holds, i.e., whether
or not Φ logically entails A. The mechanism for the logical inference is based on
SLD-resolution algorithm, which uses the resolution rule together with first-order
unification.

Example 1. Consider the following logic program Φ, consisting of Horn formulas
labelled by κ1, κ2, κ3, defining connectivity for a graph with three nodes:

κ1 : ∀x.∀y.∀z.Connect(x, y),Connect(y, z)⇒ Connect(x, z)
κ2 : ⇒ Connect(node1,node2)
κ3 : ⇒ Connect(node2,node3)

In the above program, Connect is a predicate, and node1 – node3 are constants.
SLD-derivation for the query Connect(x, y) can be represented as reduction:

Φ ` {Connect(x, y)} κ1,[x/x1,y/z1]

{Connect(x, y1),Connect(y1, y)} κ2,[node1/x,node2/y1,node1/x1,y/z1]

{Connect(node2, y)} κ3,[node3/y,node1/x,node2/y1,node1/x1,node3/z1] ∅

The first reduction κ1,[x/x1,y/z1] unifies query Connect(x, y) with the head of
the rule κ1, Connect(x1, z1). Note that x/x1 means x1 is replaced by x. After
that, the query is resolved with the formula of κ1, producing the next queries:
Connect(x, y1), Connect(y1, y).

Seeing program as Horn clauses, the above derivation first assumed that
Connect(x, y) is false, and then deduced a contradiction (an empty goal) from
the assumption. As every SLD-derivation is essentially a proof by contradiction,
traditionally, the exact content of such proofs plays little role in determining
entailment. Instead, termination of derivations plays a crucial role. When it
comes to logical entailment with respect to programs that admit non-terminating
derivations, resolution gives only a semi-decision procedure. A long-standing
challenge has been to find computationally effective mechanisms that guarantee
termination of LP proof search, and to use them to deduce logical entailment
for LP [3].

LP approach of preserving a tight connection between entailment and termi-
nation makes it hard to model corecursive computations. There are potentially
infinite derivations that may bear some interesting computational meaning.

Example 2. The following program defines the predicate Stream:

κ1 : ∀x.∀y.Stream(y)⇒ Stream(cons(x, y))

It models infinite streams, and will result in infinite derivations, e.g.:

Φ ` {Stream(cons(x, y))} κ1,[x/x1,y/y1] {Stream(y)} κ1,[cons(x2,y2)/y]

{Stream(y2)} κ1,[cons(x3,y3)/y2] . . .

For the query Stream(cons(x, y)), we may still want to either obtain a de-
scription of the solution for the variable y, or make finite observation on its
solution, however, none of these are supported by standard SLD-resolution.

Two groups of methods have been proposed to address this problem.
– CoLP ([5], [12]) offers methods for loop invariant analysis in SLD-derivations:

infinite derivations are terminated if a loop of a certain shape is detected in resol-
vents, e.g., Stream(y) and Stream(y2) above are unifiable, so one may conclude
with a regular description [cons(x2, y)/y].

– There are many infinite derivations that do not form a loop, CoALP/S-
resolution ([10], [6]) aim to provide general coinductive gurantee that for produc-
tive infinte derivation, one can make finite observation. E.g. in S-resolution, the
derivation for Stream(cons(x, y)) will stop at Stream(y2) and report the process
is infinite with partial answer [cons(x2, y2)/y], then one can choose to continue
the derivation to further inspect y2.

Let us view SLD-derivations as reductions, starting from a given query and
using unification with Horn formulas; we call such reductions LP-Unif reductions

2

and denote them by . If we restrict the unification algorithm underlying such
reductions to allow only term-matchers instead of unifiers, we obtain LP-TM
reductions, denoted by →. They model computations performed by rewriting
trees in [6], and it has interesting properties distinguishing them from LP-Unif
reductions. Firstly, they may give partial proofs compared to LP-Unif reductions:

Example 3. The following program defines bits and lists of bits:

κ1 : ⇒ Bit(0)
κ2 : ⇒ Bit(1)

κ3 : ⇒ BList(nil)
κ4 : ∀x.∀y.BList(y),Bit(x)⇒ BList(cons(x, y))

Below is an example of LP-TM reduction to normal form:

Φ ` {BList(cons(x, y))} →κ4 {Bit(x),BList(y)}

Above, the head of the rule κ4 is matched to the query by substitution [x/x1, y/y1],
which is applied to the body of the rule κ4, thus resolving to {Bit(x),BList(y)}.
But LP-Unif would be able to complete the proof:

Φ ` {BList(cons(x, y))} κ4,[x/x1,y/y1] {Bit(x),BList(y)} κ1,[0/x,0/x1,y/y1]

{BList(y)} κ3,[nil/y,0/x,0/x1,nil/y1] ∅

On the other hand, LP-TM reductions terminate for programs that are tra-
ditionally seen as coinductive:

Example 4. Consider LP-TM reduction for the program of Example 2:

Φ ` {Stream(cons(x, y))} →κ1 {Stream(y)}

Finally, LP-TM reductions are not guaranteed to terminate in general.

Example 5. For the program of Example 1, we have the following non-terminating
reduction by LP-TM.

Φ ` {Connect(x, y)} →κ1 {Connect(x, y1),Connect(y1, y)}
→κ1 {Connect(x, y2),Connect(y2, y1),Connect(y1, y)} →κ1 ...

The programs that admit only finite LP-TM reductions are called productive
logic programs ([10], [6]). As S-resolution combines LP-TM with unification,
finiteness of LP-TM reductions allows one to observe partial answer, while the
whole derivation may be infinite. Finiteness of LP-TM is also the key property
to ensure this combination of LP-TM with unification is well-behaved, that is,
it ensures the operational equivalence of LP-Struct and SLD resolution (we will
show this later).

In Section 2, we formalise S-resolution as reduction rules that combine LP-
TM reductions with substitution steps, and call the resulting reductions LP-
Struct reductions. We see that for the program in Example 1, LP-TM reduction
will necessarily diverge, while for LP-Unif there exists a finite success path.
This mismatch between LP-TM and LP-Unif makes it difficult to establish the

3

operational relation between LP-Unif and LP-Struct. As Section 4 shows, they
are not operationally equivalent, in general. However, they are equivalent for
programs that are productive (have finite TM-reductions) and non-overlapping
(have no common instances for the Horn formula heads).

In Section 3, we introduce a technique called realizability transformation,
that, given a program Φ, produces a program F (Φ) that is productive and non-
overlapping. Realizability transformation is an interesting proof technique on its
own, bearing resemblance to Kleene’s [9] method under the same name. Here,
it serves several purposes. 1. It helps to define a class of programs for which
S-Resolution and SLD-resolution are operationally equivalent. 2. It gives means
to record the proof content alongside reductions. 3. It preserves proof-theoretic
meaning of the original program and computational behaviour of LP-Unif re-
ductions.

In order to specify the proof-theoretic meaning of various LP-reductions, we
introduce a type-theoretic approach to recover the notion of proof in LP. It has
been noticed by Girard [4], that resolution rule A∨B ¬B∨D

A∨D can be expressed by

means of the cut rule in intuitionistic sequent calculus: A⇒B B⇒D
A⇒D . Although

the resolution rule is classically equivalent to the cut rule, the cut rule is better
suited for performing computation and at the same time preserving constructive
content. In Section 2 we devise a type system reflecting this intuition: if p1 is
a proof of A ⇒ B and p2 is a proof of B ⇒ D, then λx.p2(p1x) is a proof of
A ⇒ D. Thus, a proof can be recorded along with each cut rule. The type sys-
tem we propose gives a proof theoretic interpretation for LP in general, and in
particular to S-resolution. It also allows us to see clearly the proof-theoretic dif-
ferences between LP-Unif/LP-Struct and LP-TM. Namely, LP-Unif/LP-Struct
give proofs for Horn formulas of the form ∀x.⇒ σA, while LP-TM gives proofs
for ∀x.⇒ A. In Sections 3, the type system provides a precise tool to express the
realizability transformation and prove it is a meaning-preserving transformation.

Detailed proofs for lemmas and theorems in this paper may be found in the
extended version1.

2 A Type System for LP: Horn-Formulas as Types

We first formulate a type system to model LP. We show how LP-Unif, LP-TM
and LP-Struct can be defined in terms of reduction rules. We show that LP-Unif
and LP-TM are sound with respect to the type system.

Definition 1.
Term t ::= x | f(t1, ..., tn)
Atomic Formula A,B,C,D ::= P (t1, ..., tn)
(Horn) Formula F ::= [∀x].A1, ..., An ⇒ A
Proof Term p, e ::= κ | a | λa.e | e e′
Axioms/LP Programs Φ ::= · | κ : F,Φ

1 Extended version is available from: http://staff.computing.dundee.ac.uk/

pengfu/document/papers/tm-lp.pdf

4

http://staff.computing.dundee.ac.uk/pengfu/document/papers/tm-lp.pdf
http://staff.computing.dundee.ac.uk/pengfu/document/papers/tm-lp.pdf

Functions of arity zero are called term constants, FV(t) returns all free term
variables of t. We use A to denote A1, ..., An, when the number n is unimportant.
If n is zero for A ⇒ B, then we write ⇒ B. Note that B is an atomic formula,
but⇒ B is a formula, we distinguish the notion of atomic formulas from (Horn)
formulas. The formula A1, ..., An ⇒ B can be informally read as “the conjunction
of Ai implies B”. We write ∀x.F for quantifying over all the free term variables in
F ; [∀x].F denotes F or ∀x.F . LP program B ⇐ A are represented as ∀x.A⇒ B
and query is an atomic formula. Proof terms are lambda terms, where κ denotes
a proof term constant and a denotes a proof term variable.

The following is a new formulation of a type system intended to provide a
type theoretic foundation for LP.

Definition 2 (Horn-Formulas-as-Types System for LP).

e : F
e : ∀x.F

gen
e1 : A⇒ D e2 : B,D ⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

e : ∀x.F
e : [t/x]F

inst
(κ : ∀x.F) ∈ Φ

κ : ∀x.F axiom

Note that the notion of type is identified with Horn formulas (atomic intuition-
istic sequent), not atomic formulas. The usual sequent turnstile ` is internalized
as intuitionistic implication⇒. The rule for first order quantification ∀ is placed
outside of the sequent. The cut rule is the only rule that produces new proof
terms. In the cut rule, λa.t denotes λa1....λan.t and t b denotes (...(t b1)...bn).
The size of a is the same as A and the size of b is the same as B, and a, b are
not free in e1, e2.

Our formulation is given in the style of typed lambda calculus and sequent
calculus, the intention for this formulation is to model LP type-theoretically.
It has been observed the cut rule and proper axioms in intuitionistic sequent
calculus can emulate LP [4](§13.4). Here we add a proof term annotation and
make use of explicit quantifiers. Our formulation uses Curry-style in the sense
that for the gen and inst rule, we do not modify the structure of the proof
terms. Curry-style formulation allows us to focus on the proof terms generated
by applying the cut rule.

Definition 3 (Beta-Reduction). We define beta-reduction on proof terms as
the congruence closure of the following relation: (λa.p)p′ →β [p′/a]p

Definition 4 (Term Matching). We define A 7→σ B, A is matchable to B
with a substitution σ and t 7→σ t

′, t is matchable to t′ with a substitution σ.

x 7→[t/x] t

{ti 7→σi t
′
i}i∈{1,...,n}

P (t1, ..., tn) 7→σ1∪...∪σn P (t′1, ..., t
′
n)

{ti 7→σi t
′
i}i∈{1,...,n}

f(t1, ..., tn) 7→σ1∪...∪σn f(t′1, ..., t
′
n)

Here [t1/x] ∪ [t2/x] = [t1/x] if t1 ≡ t2, else, the matching process fails; and
[t1/x] ∪ [t2/y] = [t1/x, t2/y].

5

Definition 5 (Unification). We define A ∼γ B, A is unifiable to B with
substitution γ and t ∼γ t′, t is unifiable with t′ with substitution γ.

x ∼∅ x
x /∈ FV(t)

x ∼[t/x] t

{γti ∼γi γt′i γ := γi−1 · ... · γ0}i∈{1,...,n} γ0 = ∅
f(t1, ..., tn) ∼γn·...·γ1 f(t′1, ..., t

′
n)

x /∈ FV(t)

t ∼[t/x] x

{γti ∼γi γt′i γ := γi−1 · ... · γ0}i∈{1,...,n} γ0 = ∅
P (t1, ..., tn) ∼γn·...·γ1 P (t′1, ..., t

′
n)

Note that γ is updated for each i, and γ ·γ′ denotes composition of substitutions
γ, γ′.

Below, we formulate different notions of reduction for LP. A similar style of
formulating SLD-derivation as reduction system appeared in [11], but we identify
two more kinds of reductions here: term-matching and substitutional reductions.

Definition 6 (Reductions). We define reduction relations on the multiset of
atomic formulas:

– Term-matching(LP-TM) reduction:
Φ ` {A1, ..., Ai, ..., An} →κ,γ′ {A1, ..., σB1, ..., σBm, ..., An} for any substitu-
tion γ′, if there exists κ : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C 7→σ Ai.

– Unification(LP-Unif) reduction:
Φ ` {A1, ..., Ai, ..., An} κ,γ·γ′ {γA1, ..., γB1, ..., γBm, ..., γAn} for any sub-
stitution γ′, if there exists κ : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C ∼γ Ai.

– Substitutional reduction:
Φ ` {A1, ..., Ai, ..., An} ↪→κ,γ·γ′ {γA1, ..., γAi, ..., γAn} for any substitution
γ′, if there exists κ : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C ∼γ Ai.

The second subscript of term-matching reduction is used to store the substitu-
tions obtained by unification, it is only used when we combine term-matching
reductions with substitutional reductions. The second subscript in unification
and substitutional reduction is intended as a state, it will be updated along
with reductions. If we just talk about term-matching reduction alone, we usu-
ally use → or →κ. We assume implicit renaming of all quantified variables each
time the above rule is applied. We write and ↪→ when we leave the under-
lining state implicit. We use →∗ to denote the reflexive and transitive closure
of →, similarly for . Notation ∗γ and →∗γ is used when the final state along
the reduction path is γ. Notice the difference between the substitutional reduc-
tion and the unification reduction. Unification reduction requires applying the
substitution generated by unification to every atomic formula in the multiset.
For term-matching reduction, the other atomic formulas are not affected by the
computed substitution, thus term-matching reductions can be parallelised.

Given a program Φ and a set of queries {B1, . . . , Bn}, LP-Unif uses only
unification reduction to reduce {B1, . . . , Bn}:

Definition 7 (LP-Unif). Given a logic program Φ, LP-Unif is given by an
abstract reduction system (Φ,).

6

Given a program Φ and a set of queries {B1, . . . , Bn}, LP-TM uses only
term-matching reduction to reduce {B1, . . . , Bn}:

Definition 8 (LP-TM). Given a logic program Φ, LP-TM is given by an
abstract reduction system (Φ,→).

LP-TM seems to be a foreign notion for LP, but it is used in Context Re-
duction [8] in type class instance resolution. LP-TM reductions is all we need to
define productivity ([10], [6]):

Definition 9 (Productivity). We say a program Φ is productive iff every →-
reduction is finite.

Definition 10. We use →µ to denote a reduction path to a →-normal form. If
the →-normal form does not exist, i.e. every →-reduction path is infinite, then
→µ denotes an infinite reduction path. If we know that→ is strongly normalizing,
then we use →ν to denote a reduction path to a →-normal form. We write ↪→1

to denote at most one step of ↪→.

Given a program Φ and a set of queries {B1, . . . , Bn}, LP-Struct first uses
term-matching reduction to reduce {B1, . . . , Bn} to a normal form, then per-
forms one step substitutional reduction, and then repeats this process.

Definition 11 (LP-Struct). Given a logic program Φ, LP-Struct is given by
an abstract reduction system (Φ,→µ · ↪→1).

If a finite term-matching reduction path does not exist, then→µ · ↪→1 denotes
an infinite path. When we write Φ ` {A}(→µ · ↪→1)∗{C}, it means a nontrivial
finite path will be of the shape Φ ` {A} →µ · ↪→ ·...· →µ · ↪→ · →µ {C}.

We first show that LP-Unif and LP-TM are sound w.r.t. the type system of
Definition 2, which implies that we can obtain a proof for each successful query.

Lemma 1. If Φ ` {A1, ..., An} ∗γ ∅, then there exist proofs e1 : ∀x. ⇒
γA1, ..., en : ∀x.⇒ γAn, given axioms Φ.

Proof. By induction on the length of the reduction.
Base Case. Suppose the length is one, namely, Φ ` {A} κ,γ ∅. It implies that
there exists (κ : ∀x.⇒ C) ∈ Φ, such that C ∼γ A. So we have κ : ⇒ γC by the
inst rule. Thus κ : ⇒ γA by γC ≡ γA. Hence κ : ∀x.⇒ γA by the gen rule.
Step Case. Suppose Φ ` {A1, ..., Ai, ..., An} κ,γ {γA1, ..., γB1, ..., γBm, ..., γAn}
 ∗γ′ ∅, where κ : ∀x.B1, ..., Bm ⇒ C and C ∼γ Ai. By IH, we know that there
exist proofs e1 : ∀x.⇒ γ′γA1, ..., p1 : ∀x.⇒ γ′γB1, ..., pm : ∀x.⇒ γ′γBm, ..., en :
∀x.⇒ γ′γAn. We can use inst rule to instantiate the quantifiers of κ using γ′ ·γ,
so we have κ : γ′γB1, ..., γ

′γBm ⇒ γ′γC. Since γ′γAi ≡ γ′γC, we can construct
a proof ei = κ p1 ... pm with ei : ⇒ γ′γAi, by applying the cut rule m times.
By gen, we have ei : ∀x.⇒ γ′γAi. The substitution generated by the unification
is idempotent, and γ′ is accumulated from γ, i.e. γ′ = γ′′ · γ for some γ′′, so
γ′γAj ≡ γ′′γγAj ≡ γ′′γAj ≡ γ′Aj for any j. Thus we have ej : ∀x. ⇒ γ′Aj for
any j.

7

Theorem 1 (Soundness of LP-Unif). If Φ ` {A} ∗γ ∅ , then there exists a
proof e : ∀x.⇒ γA given axioms Φ.

For example, by the soundness theorem above, the derivation in Example 1
yields a proof (λb.(κ1 b) κ3) κ2 for the formula ⇒ Connect(node1,node3).

Theorem 2 (Soundness of LP-TM). If Φ ` {A} →∗ ∅ , then there exists a
proof e : ∀x.⇒ A given axioms Φ.

Observing Theorem 1 and Theorem 2, we see that for LP-TM, there is no
need to accumulate substitutions, and the resulting formula is proven as stated,
and does not require substitution. This difference is due to the difference of LP-
TM and LP-Unif reductions. We are going to postpone the proof of soundness
theorem for LP-Struct to Section 4, there we show LP-Struct and LP-Unif are
operationally equivalent, which implies the soundness of LP-Struct.

3 Realizability Transformation

We define realizability transformation in this section. Realizability described in
[9](§82) is a technique that uses a number to represent a proof of a number-
theoretic formula. The transformation described here is similar in the sense that
we use a first order term to represent the proof of a formula. More specifically,
we use a first order term as an extra argument for a formula to represent a proof
of that formula. Before we define the transformation, we first state several basic
results about the type system in Definition 2.

Theorem 3 (Strong Normalization). If e : F , then e is strongly normaliz-
able w.r.t. beta-reduction on proof terms.

The proof of strong normalization (SN) is an adaptation of Tait-Girard’s
reducibility proof. Since the first order quantification does not impact the proof
term, the proof is very similar to the SN proof of simply typed lambda calculus.

Lemma 2. If e : [∀x.]A ⇒ B given axioms Φ, then either e is a proof term
constant or it is normalizable to the form λa.n, where n is first order normal
proof term.

Theorem 4. If e : [∀x.]⇒ B, then e is normalizable to a first order proof term.

Lemma 2 and Theorem 4 show that we can use first order terms to represent
normalized proof terms; and thus pave the way to realizability transformation.

Definition 12 (Representing First Order Proof Terms). Let φ be a map-
ping from proof term variables to first order terms. We define a representation
function J·Kφ from first order normal proof terms to first order terms.
– JaKφ = φ(a).
– Jκ p1...pnKφ = fκ(Jp1Kφ, ..., JpnKφ), where fκ is a function symbol.

8

Definition 13. Let A ≡ P (t1, ..., tn) be an atomic formula, we write A[t′], where
(
⋃
i FV(ti)) ∩ FV(t′) = ∅, to abbreviate a new atomic formula P (t1, ..., tn, t

′).

Definition 14 (Realizability Transformation). We define a transformation
F on formula and its normalized proof term:

– F (κ : ∀x.A1, ..., Am ⇒ B) = κ : ∀x.∀y.A1[y1], ..., Am[ym]⇒ B[fκ(y1, ..., ym)],
where y1, ..., ym are all fresh and distinct.

– F (λa.n : [∀x].A1, ..., Am ⇒ B) = λa.n : [∀x.∀y].A1[y1], ..., Am[ym]⇒
B[JnK[y/a]], where y1, ..., ym are all fresh and distinct.

The realizability transformation systematically associates a proof to each
atomic formula, so that the proof can be recorded along with reductions.

Example 6. The following logic program is the result of applying realizability
transformation on the program in Example 1.

κ1 : ∀x.∀y.∀u1.∀u2.Connect(x, y, u1),Connect(y, z, u2)⇒ Connect(x, z, fκ1(u1, u2))
κ2 : ⇒ Connect(node1, node2, cκ2)
κ3 : ⇒ Connect(node2, node3, cκ3)

Before the realizability transformation, we have the following judgement:

λb.(κ1 b) κ2 : Connect(node2, z)⇒ Connect(node1, z)

We can apply the transformation, we get:

λb.(κ1 b) κ2 : Connect(node2, z, u1)⇒ Connect(node1, z, J(κ1 b) κ2K[u1/b])

which is the same as

λb.(κ1 b) κ2 : Connect(node2, z, u1)⇒ Connect(node1, z, fκ1(u1, cκ2))

Observe that the transformed formula:
Connect(node2, z, u1)⇒ Connect(node1, z, fκ1(u1, cκ2)) is provable by λb.(κ1 b) κ2
using the transformed program.

Let F (Φ) mean applying the realizability transformation to every axiom in Φ.
We write (F (Φ),), (F (Φ),→), (F (Φ),→µ · ↪→1), to mean given axioms F (Φ),
use LP-Unif, LP-TM, LP-Struct respectively to reduce a given query. Note that
for query A in (Φ,), (Φ,→), (Φ,→µ · ↪→1), it becomes query A[t] for some t
such that FV(A) ∩ FV(t) = ∅ in (F (Φ),), (F (Φ),→), (F (Φ),→µ · ↪→1).

The next Theorem establishes that, for any program Φ, LP-TM reductions
for F (Φ) are strongly normalizing.

Theorem 5. For any (Φ,→µ · ↪→1), we have (F (Φ),→ν · ↪→1).

Proof. We just need to show →-reduction is strongly normalizing in (F (Φ),→).
By Definition 12 and 14, we can establish a decreasing measurement(from right
to left) for each rule in F (Φ), since the last argument in the head of each rule is
strictly larger than the ones in the body.

9

The above theorem shows that we can use realizability transformation to ob-
tain productive logic programs, moreover, this transformation is general, mean-
ing that any logic program can be transformed to an equivalent productive one.
The following theorem shows that realizability transformation does not change
the proof-theoretic meaning of a program.

Theorem 6. Given axioms Φ, if e : [∀x].A ⇒ B holds with e in normal form,
then F (e : [∀x].A⇒ B) holds for axioms F (Φ).

The other direction for the theorem above is not true if we ignore the trans-
formation F , namely, if e : ∀x.⇒ A[t] for axioms Φ, it may not be the case that
e : ∀x. ⇒ A, since the axioms Φ may not be set up in a way such that t is a
representation of proof e. The following theorem shows that the extra argument
is used to record the term representation of the corresponding proof.

Theorem 7. Suppose F (Φ) ` {A[y]} ∗γ ∅. We have p : ∀x. ⇒ γA[γy] for
F (Φ), where p is in normal form and JpK∅ = γy.

Now we are able to show that realizability transformation will not change
the unification reduction behaviour.

Lemma 3. Φ ` {A1, ..., An} ∗ ∅ iff F (Φ) ` {A1[y1], ..., An[yn]} ∗ ∅.

Proof. For each direction, by induction on the length of the reduction. Each
proof will be similar to the proof of Lemma 1, see the extended version for the
details.

Theorem 8. Φ ` {A} ∗ ∅ iff F (Φ) ` {A[y]} ∗ ∅.

Example 7. Consider the logic program after realizability transformation in Ex-
ample 6. Realizability transformation does not change the behaviour of LP-
Unif, we still have the following successful unification reduction path for query
Connect(x, y, u):

F (Φ) ` {Connect(x, y, u)} κ1,[x/x1,y/z1,fκ1 (u3,u4)/u]

{Connect(x, y1, u3),Connect(y1, y, u4)}
 κ2,[cκ2/u3,node1/x,node2/y1,node1/x1,b/z1,fκ1 (cκ2 ,u4)/u]

{Connect(node2, y, u4)}
 κ3,[cκ3/u4,cκ2/u3,node3/y,node1/x,node2/y1,node1/x1,node3/z1,fκ1 (cκ2 ,cκ3)/u] ∅

The realizability transformation uses the extra argument as decreasing mea-
surement to the program to achieve the termination of→-reduction. We want to
point out that realizability transformation does not modify the proof-theoretic
meaning and the execution behaviour. The next example shows that not every
transformation technique for obtaining productive programs have such proper-
ties:

Example 8. Consider the following program:

10

κ1 : ⇒ P (int)
κ2 : ∀x.P (x), P (list(x))⇒ P (list(x))

It is a folklore method to add a structurally decreasing argument as a measure-
ment to ensure finiteness of →µ.

κ1 : ⇒ P (int, 0)
κ2 : ∀x.∀y.P (x, y), P (list(x), y)⇒ P (list(x), s(y))

We denote the above program as Φ′. Indeed with the measurement we add,
the term-matching reduction in Φ′ will be finite. But the reduction for query
P (list(int), z) using unification will fail:

Φ′ ` {P (list(int), z)} κ2,[int/x,s(y1)/z]

{P (int, y1), P (list(int), y1)} κ2,[0/y1,int/x,s(0)/z] {P (list(int), 0)} 6

However, the query P (list(int)) on the original program using unification reduc-
tion will diverge. Divergence and failure are operationally different. Thus adding
arbitrary measurement may modify the execution behaviour of a program (and
hence the meaning of the program), but by Theorems 6-8, realizability transfor-
mation does not modify the execution behaviour of unification reduction.

4 Operational Equivalence of LP-Struct and LP-Unif

Since realizability transformation does not change the proof theoretic meaning
of the program or modify the behaviour of unification reduction, we will work
directly on F (Φ) in this section. We will show that LP-Struct and LP-Unif are
equivalent after the realizability transformation. By Theorem 5, it suffices to
consider (F (Φ),→ν · ↪→1) for LP-Struct.

The following lemma shows that each LP-Unif reduction can be emulated
by one step of substitutional reduction followed by one step of term-matching
reduction.

Lemma 4. If F (Φ) ` {A1, ..., Ai, ..., An} γ {γA1, ..., γB, ..., γAn} for κ :
∀x.B ⇒ C ∈ F (Φ) such that C ∼γ Ai, then F (Φ) ` {A1, ..., Ai, ..., An} ↪→κ,γ

{γA1, ..., γAi, ..., γAn} →κ {γA1, ..., γB, ..., γAn}.

The following lemma shows that for →-normal form, each ↪→ · → step is
equivalent to a step of reduction.

Lemma 5. Let {A1[x1], ..., An[xn]} be a multiset of atomic formulas in →-
normal form, and suppose there exists
κ : ∀x.y.B1[y1], ..., Bm[ym]⇒ C[fκ(y1, ..., ym)] ∈ F (Φ) such that
C[fκ(y1, ..., ym)] ∼γ Ai[xi]. Then we have the following:

1. F (Φ) ` {A1[x1], ..., Ai[xi], ..., An[xn]} ↪→κ,γ {γA1[x1], ..., γAi[γxi], ..., γAn[xn]}
→κ {γA1, ..., γB1[y1], ..., γBm[ym], ..., γAn[yn]},
with {γA1[x1], ..., γB1[y1], ..., γBm[ym], ..., γAn[xn]} in →-normal form.

11

2. F (Φ) ` {A1[x1], ..., Ai[xi], ..., An[xn]} κ,γ

{γA1[x1], ..., γB1[y1], ..., γBm[ym], ..., γAn[xn]}.

Proof. We only prove 1. here. We know {y1, ..., ym, x1, ..., xi−1, xi+1, .., xn} ∩
dom(γ) = ∅, xi ∈ dom(γ), and every head in F (Φ) is of the form D[f(z)], so
{γA1[x1], ..., γB1[y1], ..., γBm[ym], ..., γAn[xn]} is in →-normal form.

Theorem 9 (Equivalence of LP-Struct and LP-Unif). F (Φ) ` {A[y]} ∗
∅ iff F (Φ) ` {A[y]}(→ν · ↪→1)∗∅.

Proof. From left to right, by Lemma 4 and Lemma 5(1), we know that each
step can be simulated by ↪→ · →. From right to left, by Lemma 5(1), we know
that the concrete shape of F (Φ) ` {A[y]}(→ν · ↪→1)∗∅ must be of the form
F (Φ) ` {A[y]}(↪→ · →)∗∅, then by Lemma 5(2), we have F (Φ) ` {A[y]} ∗ ∅.

Example 9. For the program in Example 6, the query Connect(x, y, u) can be
reduced by LP-Struct successfully:

F (Φ) ` {Connect(x, y, u)} ↪→κ1,[x/x1,y/z1,fκ1 (u3,u4)/u]

{Connect(x, y, fκ1(u3, u4))} →κ1 {Connect(x, y1, u3),Connect(y1, y, u4)}
↪→κ2,[cκ2/u3,node1/x,node2/y1,node1/x1,b/z1,fκ1 (cκ2 ,u4)/u]

{Connect(node1, node2, cκ2),Connect(node2, y, u4)} →κ2 {Connect(node2, y, u4)}
↪→κ3,[cκ3/u4,cκ2/u3,node3/y,node1/x,node2/y1,node1/x1,node3/z1,fκ1 (cκ2 ,cκ3)/u]

{Connect(node2,node3, cκ3)} →κ3 ∅

Note that the answer for u is fκ1(cκ2 , cκ3), which is the first order term repre-
sentation of the proof of ⇒ Connect(node1,node3).

After the realizability transformation, LP-Struct is equivalent to LP-Unif in
the sense of Theorem 9. As a consequence, we have the soundness theorem for
LP-Struct w.r.t. the type system in Definition 2.

Corollary 1 (Soundness of LP-Struct). If F (Φ) ` {A[y]}(→ν · ↪→1)∗γ∅, then
there exist e : ∀x. ⇒ γ(A[y]) for F (Φ).

We have seen that without realizability transformation, LP-Struct is not op-
erationally equivalent to LP-Unif by Example 1. Example 9 shows that after
realizability transformation, we do get operational equivalence of LP-Struct and
LP-Unif. The mismatch of LP-Unif and LP-Struct seems to be due to the in-
finity of the →-reduction. One may wonder whether it is the case that for any
productive program, LP-Struct and LP-Unif are operationally equivalent. The
following example shows that it is not the case in general.

Example 10.

κ1 : ⇒ P (c)
κ2 : ∀x.Q(x)⇒ P (x)

Here c is a constant. The program is →-terminating. However, for query P (x),
we have Φ ` {P (x)} κ1,[c/x] ∅ with LP-Unif, but Φ ` {P (x)} →κ2

{Q(x)} 6↪→
for LP-Struct.

12

So termination of →-reduction is insufficient for establishing the relation
between LP-Struct and LP-Unif. In Example 10, the problem is caused by the
overlapping heads P (c) and P (x). Motivated by the notion of non-overlapping
in term rewrite system ([2], [1]), we have the following definition.

Definition 15 (Non-overlapping Condition). Axioms Φ are non-overlapping
if for any two formulas ∀x.B ⇒ C,∀x.D ⇒ E ∈ Φ, there are no substitution σ, δ
such that σC ≡ δC ′.

The theorem below shows that for any non-overlapping program, terminating
reductions in LP-Struct are operationally equivalent to terminating reductions
in LP-Unif. However, without productivity, LP-Struct and LP-Unif are no longer
operationally equivalent for the diverging program.

Theorem 10. Suppose Φ is non-overlapping. Φ ` {A1, ..., An} ∗γ {C1, ..., Cm}
with {C1, ..., Cm} in -normal form iff Φ ` {A1, ..., An}(→µ · ↪→1)∗γ{C1, ..., Cm}
with {C1, ..., Cm} in →µ · ↪→1-normal form.

Example 11. Consider the following non-productive and non-overlapping pro-
gram and its version after the realizability transformation:

Original program: κ : ∀x.P (x)⇒ P (x)
After transformation: κ : ∀x.∀u.P (x, u)⇒ P (x, fκ(u))

Both LP-Struct and LP-Unif will diverge for the queries P (x), P (x, y) in both
original and transformed versions. LP-Struct reduction diverges for different rea-
sons in the two cases, one is due to divergence of →-reduction:
Φ ` {P (x)} → {P (x)} → {P (x)}...
The another is due to ↪→-reduction:
Φ ` {P (x, y)} ↪→ {P (x, fk(u))} → {P (x, u)} ↪→ {P (x, fk(u′))} → {P (x, u′)}...

Note that a single step of LP-Unif reduction for the original program corre-
sponds to infinite steps of term-matching reduction in LP-Struct. For the trans-
formed version, a single step of LP-Unif reduction corresponds to finite steps of
LP-Struct reduction.

The next theorem shows that we need both productivity and non-overlapping
to establish operational equivalence of LP-Struct and LP-Unif for both finite
and infinite reductions. Note that realizability transformation guarantees exactly
these two properties.

Theorem 11. Suppose Φ is non-overlapping and productive.

1. If Φ ` {A1, ..., An} {B1, ..., Bm}, then Φ ` {A1, ..., An}(→ν · ↪→1)∗{C1, ..., Cl}
and Φ ` {B1, ..., Bm} →∗ {C1, ..., Cl}.

2. If Φ ` {A1, ..., An}(→ν · ↪→1)∗{B1, ..., Bm}, then Φ ` {A1, ..., An} ∗
{B1, ..., Bm}.

For the diverging but productive programs (like Stream of Example 2), pro-
ductivity gives opportunity to make finite observations for potentially infinite
derivations [6], and allows us not to eargerly unfold the infinite derivation.

13

5 Conclusions and Future Work

We proposed a type system that gives a proof theoretic interpretation for LP,
where Horn formulas correspond to the notion of type, and a successful query
yields a first order proof term. The type system also provided us with a pre-
cise tool to show that realizability transformation preserves both proof-theoretic
meaning of the program and the execution behaviour of the unification reduc-
tion.

We formulated S-resolution as LP-Struct reduction, which can be seen as a
reduction strategy that combines term-matching reduction with substitutional
reduction. This formulation allowed us to study the operational relation be-
tween LP-Struct and LP-Unif. The operational equivalence of LP-Struct and
LP-Unif is by no means obvious. Previous work ([6], [10]) only gives sound-
ness and completeness of LP-Struct with respect to the Herbrand model. We
identified that productivity and non-overlapping are essential for showing their
operational equivalence. Therefore, these two properties identify the “structural”
fragment of logic programs.

Realizability transformation proposed here ensures that the resulting pro-
grams are productive and non-overlapping. It preserves the proof-theoretic mean-
ing of the program, in a formally defined sense of Theorems 6-8. It serves as a
proof-method that enables us to show the operational equivalence of LP-Unif
and LP-Struct, for productive and non-overlapping programs. It is general, ap-
plies to any logic program, and can be easily mechanised. Finally, it allows to
automatically record the proof content in the course of reductions, as Theorem 7
establishes.

With the proof system for LP-reductions we proposed, we are planning to
further investigate the interaction of LP-TM/Unif/Struct with typed functional
languages. We expect to find a tight connection between our work and the type
class inference, cf. ([13,7]). Using terminology of this paper, a type class cor-
responds to an atomic formula, an instance declaration corresponds to a Horn
formula, and the instance resolution process in type class inference uses LP-
TM reductions, in which evidence for the type class corresponds to our notion
of proof. Realizability transformation then gives a method to record the proof
automatically. A careful examination of these connections is warranted.

If one works only with Horn-formulas in LP, then we know that the proof of
a successful query can be normalized to a first order proof term. It seems that
nothing interesting can happen to the proof term. But when we plug the proof
system into a typed functional language in the form of a type class and instance
declaration, the proof will correspond to the evidence for the type class, and it
will interact with the underlining functional program, and eventually will be run
as a program. For example, the following declaration specifies a way to construct
equality class instance for datatype list and int:

κ1 : Eq(x)⇒ Eq(list(x))
κ2 : ⇒ Eq(int)

Here list is a function symbol, int is a constant and x is variable; κ1, κ2 will be
defined as functional programs that are used to construct the evidence. When the

14

underlining functional system makes a query Eq(list(int)), we can use LP-TM
to construct a proof for Eq(list(int)), which is κ2 κ1, and then κ2 κ1 will serve
as runtime evidence for the corresponding method, thus yielding computational
meaning of the proof.

References

1. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, New York, NY, USA, 1998.

2. Marc Bezem, Jan Willem Klop, and Roel de Vrijer. Term rewriting systems. Cam-
bridge University Press, 2003.

3. Danny De Schreye and Stefaan Decorte. Termination of logic programs: The never-
ending story. The Journal of Logic Programming, 19:199–260, 1994.

4. Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, New York, NY, USA, 1989.

5. Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon, and Ajay Mallya. Coinduc-
tive logic programming and its applications. In Logic Programming, pages 27–44.
Springer, 2007.

6. Patricia Johann, Ekaterina Komendantskaya, and Vladimir Komendantskiy. Struc-
tural resolution for logic programming. In Technical Communications of ICLP,
2015.

7. Mark P Jones. Qualified types: theory and practice, volume 9. Cambridge University
Press, 2003.

8. Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: An exploration
of the design space. In In Haskell Workshop, 1997.

9. Stephen Cole Kleene. Introduction to metamathematics. North-Holland Publishing
Company, 1952. Co-publisher: Wolters–Noordhoff; 8th revised ed.1980.

10. Ekaterina Komendantskaya, John Power, and Martin Schmidt. Coalgebraic logic
programming: from semantics to implementation. Journal of Logic and Computa-
tion, page exu026, 2014.

11. Ulf Nilsson and Jan Ma luszyński. Logic, programming and Prolog. Wiley Chich-
ester, 1990.

12. Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. Co-logic programming:
Extending logic programming with coinduction. In Automata, Languages and Pro-
gramming, pages 472–483. Springer, 2007.

13. Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 60–76. ACM, 1989.

15

